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ABSTRACT

Change detection (CD), enabled by multitemporal multispéc
satellite imagery, has many important Earth observatiossions
such as land cover/use monitoring, for which we observectiatge
regions are relatively smaller than those caused by dis@stg, for-

est fire) with patterns typically composed of a number of stmoo

regions. These observations are considered in our new @iori,

which can effectively mitigate the artifacts and specklésacsuf-

fered by existing statistic-based adidference image (DI) analysis

based methods. The proposed CD criterion amounts to a $aaje-
non-convex optimization, which is first reformulated usthg con-

vex relaxation trick with associated change map interpratethe

probability sense, followed by adopting an efficient consekver

known as alternating direction method of multipliers (ADNIM he

resulted probabilistic change map would be more practial, can
be thresholded at 0.5 to yield the conventional binary-edlone.
We also reveal a link between the proposed criterion and the
based criterion, and demonstrate the outstanding perfarenaf our
fully unsupervised CD algorithm qualitatively and quaatiitely.

ze & xy — y, € RM. A straightforward DI-based way is to detect
the changed pixels as those with significant differencescigely,
the changeg = [c1,...,cr]” € {0,1}" can be detected by

{1, it Jzell2 > ¢,
Cy =

0, otherwise

1)

where¢ > 0 is a threshold, and, = 1 means that théth pixel is
changed (and, = 0 means otherwise). Some more sophisticated
Dl-based approaches employ principal component anali?<Ta\,
including clustering PCA (cIPCA) [3] and iterative PCA (@R) [4].
However, these methods quite easily suffer from the interfee of
speckle noise scattered everywhere, as can be seen fronesitfe)
and 1(f). This motivates us to further assume that the chpatern
in LCUM would be composed of a number of smooth regions (cf.
(A2) in Section 2).

Another powerful statistic-based method is Beyasian 8igamit

D zero for Image (iBSizer) [5], which, as far as we know, yietdate-

of-the-art CD performance and will serve as our key competithe
speckle noise is significantly reduced by iBSiZer, but tremeestill

Index Terms— Change detection, multitemporal imagery, mul- some artifacts in the change map; cf. Figure 1(d). In thisepap

tispectral imagery, convex relaxation, alternating dimt method
of multipliers.

1. INTRODUCTION

Change detection (CD), playing an important role in natueal

source management and monitoring, is enabled by the mmitite

poral multispectral satellite imagery. Specifically, givevo mul-
tispectral images, represented¥s= [z1,...,2.] € RM*% and
Y =[y,..
multi-band images [1]), covering the same spatial area tyised
at different time instances, the aim is to unsupervisedigaehe
changes between the two images, wheris the number of pixels

.,yr] € RM*L (the two-dimensional representation of

we design a novel CD criterion to account for both aforenoered
assumptions. Such criterion induces a large-scale novegaopti-
mization, which is reformulated into a convex problem usingvex
relaxation [6,7] that yields a probabilistic change mapafi$aid, the
value ofc, is no longer binary but in the intervfl, 1], interpreted as
the change probability of théh pixel. This would be more practical
than conventional binary-valued CD methods because, fetpnot
easy to be classified, our method just suggests a value [0, 1]
to indicate the probability, which can be efficiently comguliby the
alternating direction method of multipliers (ADMM) [7]; veim a bi-
nary map is preferred, one can threshold the probability atdp5
in the maximum-likelihood sense, which is quite effectigenall be
seen in terms of several quantitative CD performance isdide

and M is the number of spectral bands. CD techniques are mainlyso reveal a link between the proposed criterion and thba3kd

categorized into two classes, one for disaster mapping aaother
for land cover/use monitoring (LCUM) [2], where the latteitloe
the focus of this paper. In comparison with changes causelishg-
ter (e.g., forest fire), the changes in LCUM application argeneral
subject to relatively small regions (cf. (Al) in Section 2).

Most CD methods are based on analyzing the so-califet-
ence image (D) Z & X — Y € RM*L [3], whose/’s pixel is
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criterion, and demonstrate the outstanding performancaiofully
unsupervised CD algorithm using real satellite images iaedby
Satellite Pour I’ Observation de la Terre (SPOT-7) [8].

Notation: Diag(v) is a diagonal matrix whos#h diagonal en-
try is [v]; (i.e, theith entry of vectow). diag(M ) is a column vector
whoseith entry is[M]; ;); here,[M]; ;) denotes thei, j)th entry
of matrix M. conV-) denotes convex hull. v¢d1) is the vector-
ization operator, andec;,.’ . (v) is them x n matrix M satisfying
vec(M) = v. @ is the Hadamard producy.- ||1, || - ||z and|| - ||
are thef;-norm, Euclidean norm and Frobenius norm, respectively



(resp.).1ny andOy denote the all-one and all-zefé-vectors, resp.  where ve¢C) = ¢, and\ > 0 andn > 0 are the regularization

Iz 2 {1,...,7} (Zis positive integer). weights for balancing these terms. In Section 3, we solverion
(2), which will also be linked to statistic-based (via coxvelax-
2 CD CRITERION DESIGN ation) and DI-based (via Property 1) criteria.
As discussed above, we adopt the following assumptions: 3. CD ALGORITHM DESIGN

(A1) the changes are subject to relatively small regions; ] ] ] ] )
(A2) the change pattern is piecewise smooth In this section, we design an algorithm to solve (2), which liarge-
gep P ’ scale, non-convex and non-differentiable optimizatiosbpem.

These assumptions will be rigorously formulated later. riaw, we We first handle the non-convexity, caused by the binaryedlu
further illustrate them using real satellite imagery. Igde 1(a)  constraintC € {0, 1}*1*2, by relaxing it as

(resp., Figure 1(b)), we show false color composition (\RR5) of

SPOT-7 imageX (resp.,Y") acquired over Hsinchu County region Cc conv{{O, 1} XLz} = [0, 1" <2

of Taiwan, on March 24, 2017 (resp., May 24, 2018). This image

pair illustrates a challenging scenario for CD study beeait®®y  \here the valugC]; ;, now belongs to the intervéd, 1] and can be
were acquired under different illumination conditions. isTlarea interpreted as the change probability of {figj)th pixel. Since the
(coordinate of upper-left pixel: latitud24°50"4.08”N; longitude  opjective function of (2) is already convex, the above camesax-

121°6'3.74"E) had been mostly covered by forest, but later someation technique [6, 7] allows us to reformulate (2) as a ceroee,

of its subareas incurred deforestation for other purpodanuf use;  \which can then be represented concisely using vector repi@son:
those subareas are marked by white color in Figure 1(c), fvbinh

one can see that (A1)-(A2) do well characterize those clmnge min [(X —Y)Diag(1z — ¢)|| + AMLc+nTV(e), (3)
We acknowledge that these assumptions are particularlye rfead e€(01]
LCUM (anthropogenic factor), and may not hold for changesed  whose constraint is now a convex box constraint.

by disaster (natu.ral .factor). Eﬁective CD crite.rilon/a1igmn, aided Although (3) is already convex, it is large-scale and non-
by suitable satellite imagery, is needed for efficient LCUM. differentiable. So, we adopt proximal computing in ADMM tohee
To formulate (A1)-(A2) rigorously, we us€ € {0,1}***> it To this end, by definingz 2 X — Y = [ M), 0T,

to denote the change map for a region with x L pixels, where 2 [Diag(z™"), ..., Diag(z™)]” andy £ dlag(ZT ), and
L1L, = L, andC satisfies ve@C') = ¢ (cf. (1)). We are now in by noticing||(X — Y)Diag(1, —c)||% = | Z||% + [ ¥c||3 — 24 ¢,

place to design our CD criterion, composed of three parts: we can equivalently recast (3) into a form required by ADMM:
1. Ifthe (7, j)th pixel is detected as unchanged (i[€]; ;) = \ -
0), it means thate, andy, should be similar, wheré = : 1 _ n
i+ (j — 1)L1. Thus, the first part of our criterion is to min- B N ”‘IJQHQ * ( Lo d’) cz+5TV(es)+Is(eq),
imize ||(X — Y)Diag (veq1.,17, — C)) ||, which col- _ o _ o)
lectively considers all such unchanged pixels sifted bydine ~Where I5(-) is the indicator function for the box constraint, i.e.,
agonal matrix. Is(c) = 0if ¢ € B 2 [0,1]* (Is(c) = oo, otherwise).

Then the ADMM algorithm [7] for solving (4) is detailed in Al-
ber of changed pixels can be written B C1., (i.e., the gorithm 1, referred to as CD-ADMM, in WhICh the augmented La-
number of 1's inC' € {0, 1}%1*2), by miéimizirzlg which a grangian of (4) is defined a(e, {e:}i1, {d:}ior) = 3| Teal3 +
solution satisfying (A1) is promoted. (%hlL Edw}) c2 + ]]zvc(jc;)l + IB(b‘i’zl) + Zd; 12 H?h i — ﬁiH%,

. . . . . where{d;} are scaled dual variables, ap is the penalty pa-

3. ;-nrf);deegsr(t)g itsoezclﬁsggniotro(ﬁfgfn;irr?g?rfg]%ppz:ragi%\//vl)sfe rameter. Before deriving closed-form solutions for themoblems

. |nvoIved in Algorithm 1, we present some analysis results:
its gradient map [9], where the latter can be achieved by min 9 P y
imizing the so-called (anisotropic) total variation (T\&gu-
larizer [10] defined as

h v T
TV(C) £ ) ' [A(z‘,j)cv A(i,j)c] ' , Property 2 The sequence {c"} generated by Algorithm 1 converges
(4:9) ! to a global optimum of (3), i.e,, the convex relaxation of (2).

2. The second part is to account for (Al). Note that the num-

Property 1 The DI-based criterion (1) is subsumed as a special
case by our CD criterion (2).

whereA(; ;) (resp.,Af; ;) is the horizontal (resp., vertical) Property 1 (providing a theoretical justification for thegirical ob-
first- order difference operator at tii& j)th pixel; precisely,  servation that (2) dominates DI-based criterion in CD penance)
A(l ]) [C](l 5 — [Clj—1 andAf; ;) C = [Cli) — can be proved, by using the pixel index transfaré i + (j — 1)Ly
C](L 1,5)- Note that the TV function, yleldlng con5|derable and by investigating the settirig, A\) = (0,¢?). Property 2 can be
success in machine learning and imaging sciences over theroved, by applying ADMM convergence theory [7] on (4). Diete
last decade, is convex, but not everywhere differentie@jle [  proofs for these properties are omitted here due to spadedion.

Allin all, we arrive at the following CD criterion: We remark that identifiability analysis is also critical toderstand
the fundamentals of a criterion [11], and this challenging is left
5 .
. X — Y)Diag(ved1;.1T —C H in the future research. .
[Cla, j)en{léq} V(4,4) {H( ) g( A1, 1r, )) F In case that a binary-valued change map is preferred, one can

T simply threshold the probabilistic map at 0.5 in the maxiraum
+ AL, Clr, +1) H AlipC, AfipC) H1} (@ likelihood sense; this strategy is useful when no furthatistic in-
(4.9 formation is available, and quite effective as justifiechgsseveral



Algorithm 1 The CD-ADMM Algorithm for Solving (4)
1: Given (X,Y), A > 0,7 > 0andyp > 0.
2: Initialize ¢° := 0, (or by warm start), and? := 0, Vi € Z,.
Setk := 0.

3: repeat

4 Update{cf+1}f:1 € arg ming. L ( {Cz i=1s {df}?:ﬂ;
5. Updatec**! € arg min. £ ( {Ft1y | {dF 1:1);

6: Updated® ' :=df + 't — M Vi€ Ty

7. k=k+1;

8: until the predefined stopping criterion is met.

9: Output the probabilistic change m@ = vecL1 X Lo (c®).

guantitative CD performance indices. To complete Alganith, we
still need to discuss how to updafe! ™' }7_, andc" ™ next.

3.1. Algorithm Implementation

A nice property of the reformulation (4) is that the five val&s (i.e.,
(€1, ¢2, c3, ca, ) can all be decoupled [12]. First, we has™ €
argmine, || ¥ei |3 + £]|c* — e1 — dr|3, whose closed-form so-
lution can be derived asf*! = p(OT® + uI) (" — d)) =
w23 + @) (12l + )] " © (¢f — di), where the
latter does not involve the inversion of a hufex L matrix. Sec-
ond, c5*" € argmine, (31r —w)TCQ + &+ - cz — d5|3,
whose closed-form solution can be derivedc§§1 =ct—df -

% (%IL — w) Third, we havec'CJrl € argming, 5TV(es) +
L)lc* — es — df|)3, which is exactly the total variation denois-
ing operator (withc® — d% considered as the noisy input im-
age). This operator can be efficiently solved using splitgBre
man method [13, 14], whose implementation is availablenghli
Fourth, we haveci™ € argmin., I5(ca) —|— %Hck —cq —
df |3, whose solution can be verified §§,(c® — df) (the pro-
jection of ¢* — d% onto the boxB = [0,1]%), i.e., [¢5T];

[¢® —dk)i, if & —df €0,1],

0, if ¢ —df <0, Vi e Ir. Finally, we have
1, otherwise
€ argmine 307, £|le — ¢fT — dF||3, whose solution can

be easily verified ag" ! = 1 Zizl(c,’f+1 +dy).

4. EXPERIMENTAL RESULTS WITH SPOT-7 DATA

The real satellite imageX,Y ¢ RM>*% (L = 800 x 800 pixels
with 1.5 meter ground sampling distanckf = 4 spectral bands
ranging from 450 to 890 nm) used, as described in Sectione2, a
acquired by SPOT-7 [8] over Hsinchu County region of Taiwam,
March 2017 (forX) and May 2018 (forY"), resp. This pair of im-
ages illustrates a challenging scenario for CD study dubealtf-
ferent illumination conditions, as can be seen from thdgef@olor
compositions; cf. Figures 1(a) and 1(b). The land use oftihdied
area, originally covered by forest mostly, underwent soimnges
between the two studied time instances due to anthropoglende-
estation; those changed subareas are marked by white ¢&or (
C(; ;) = 1) inFigure 1(c), where pixels witl’; ;) = 0 are marked
by black color.

Ihtt ps: // ww. mat hwor ks. conf mat | abcentral / fil eexchange/
36278- split- bregnman- nethod-for-total -variation- denoi si ng

Table 1. Quantitative comparison.

Methods | Pear (1) | Pvar (1) | Poa (1) | & (1)
iBSiZer [5] 0.0105 0.0207 0.9888 | 91.20%

clPCA[3] 0.0195 0.1788 0.9703 | 76.36%

itPCA [4] 0.0578 0.2994 0.9267 | 51.25%
CD-ADMM 0.0032 0.0861 0.9915 | 92.79%

This image pair was fed into benchmark CD methods, includ-
ing iBSiZer [5], cIPCA [3] and itPCA [4], as well as the pro-
posed CD-ADMM algorithm (i.e., Algorithm 1 witfA,n, u) =
(1e-6 1.08,0.90)). The changed pixels detected by these algorithms
are marked by white color in Figures 1(d), (e), (f) and (g¥preThe
probabilistic version of change maﬁ obtained by CD-ADMM is
also provided in Figure 1(h), which would provide good imh@tion
for user to double confirm whether a region is changed or nae O
can see that the change maps obtained by cIPCA and itPCA suffe
from serious speckle noise. The change rﬁAhpbtained by iBSiZer
is much improved but still has some artifacts. The change éiap
obtained by CD-ADMM holds best visual resemblance to the ref
erence map, as also indicated quantitatively by the globation
accuracy measurBpa (to be defined later) in Table 1.

For quantitative comparison, we adopt four commonly used CD
performance indices. To define them, Mt (resp.,N2) be the num-
ber of changed (resp., unchanged) pixels that are detestdthaged
ones, and lefV; (resp.,N4) be the number of changed (resp., un-
changed) pixels that are detected as unchanged dvies- (V2 +
N3 + Ny = L). Then the four indices are defined as follovi3:
false alarm ratéPear = Py + - (the smaller, the betterp) missed

alarm ratePyar = szT (the smaller, the better3) detection

accuracyPoa = 21181 (the larger, the betterfl) Cohen’s kappa
coefficient (the Iarger, the better), defined as

K £ (PDA - ]Dguesg/(1 - Pgues§7 (5)

Wherejjguessé [(Nl +N3)(N1 +N2)+(N2+N4)(N3+N4)]/L2 iS
the probability of the event that a random algorithm (whidkgses a
pixel as a changed one with probabili%?f—]\b) correctly detects the
class of a pixel. The results are summarized in Table 1. Towgsed
CD-ADMM performs best in terms of the false alarm rate, but pe
forms second in terms of missed alarm rate. To investigatpele
for each algorithm under test, we use yellow color to marks¢ho
N3 changed pixels it missed; since the yellow region assciaii
some[CA’]U,j) = 0 (by definition of V3), it must be non-overlapping
with the white region [@](i’j) = 1) and is thus displayed on the
same subfigure to save space. From Figure 1, most dfhaissed
pixels do not really matter in practice, because those welémions
are mostly located inside the white regions; for this reatioa user
(e.g., government) would still be aware of the changes iryédliew
Ireglons when the user has been aware of the detected chamtfes (
white regions) caused by deforestation. Thigar Would not be a
critical index in this case study. By contragkar is more important
in the LCUM application because highar will waste unnecessary
resources during the field survey stage.

Cohen’s kappa coefficient is probably the most credible in-
dex to measure the CD performance, because it takes intair@cco
the possibility of the agreement occurring by chance (bg.ran-
dom guess; cf. (5)), for which CD-ADMM significantly outperims
peer CD methods (about 1.6% higher than the state-of-titaatwe
have been aware of); note that CD-ADMM (8.51e+1 sec.) is aibou
20 times faster than iBSiZer (1.85e+3 sec.) (cIPCA and itRax
1.03e+2 and 7.95e+1 sec., resp.). As for the global accunaity
cated byPpoa, CD-ADMM again performs best.



March 24, 2017 May 24, 2018

Fig. 1. False color compositions (NIR-R-G) of two SPOT-7 imagés, Y') are displayed in (a) and (b), resp. The reference change map

Reference Map

0

(2

C, labeled artificially, is displayed in (c), where changes miarked by white color. The changesth detected by iBSiZer, cIPCA, itPCA
and the proposed CD-ADMM, are marked by white color in (d), (8 and (g), resp., where the yellow color is used to madsthchanged

pixels (inC) not detected by these methods. Finally, (h) shows the pititéc version ofC obtained by CD-ADMM.

5. CONCLUSION

We designed a new CD criterion under assumptions partigular [6]

made for LCUM, and linked it with conventional statisticslea (via
convex relaxation) and DI-based (via Property 1) critefiaen, we
adopted proximal computing to develop the CD-ADMM algarith
(i.e., Algorithm 1) for solving our criterion with convergee guaran-
tee (cf. Property 2), where closed-form solutions are éeirfor effi-
cient implementation. Experiments were conducted on re@17
satellite images, demonstrating superior efficacy of CDMADin
terms of several indices (including Cohen’s kappa coeffiieAn-
alyzing the identifiability of the proposed CD criterion isige de-
serving future investigation.
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