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ABSTRACT

Change detection (CD), enabled by multitemporal multispectral
satellite imagery, has many important Earth observation missions
such as land cover/use monitoring, for which we observe thatchange
regions are relatively smaller than those caused by disaster (e.g., for-
est fire) with patterns typically composed of a number of smooth
regions. These observations are considered in our new CD criterion,
which can effectively mitigate the artifacts and speckle noise suf-
fered by existing statistic-based anddifference image (DI) analysis
based methods. The proposed CD criterion amounts to a large-scale
non-convex optimization, which is first reformulated usingthe con-
vex relaxation trick with associated change map interpreted in the
probability sense, followed by adopting an efficient convexsolver
known as alternating direction method of multipliers (ADMM). The
resulted probabilistic change map would be more practical,and can
be thresholded at 0.5 to yield the conventional binary-valued one.
We also reveal a link between the proposed criterion and the DI-
based criterion, and demonstrate the outstanding performance of our
fully unsupervised CD algorithm qualitatively and quantitatively.

Index Terms— Change detection, multitemporal imagery, mul-
tispectral imagery, convex relaxation, alternating direction method
of multipliers.

1. INTRODUCTION

Change detection (CD), playing an important role in naturalre-
source management and monitoring, is enabled by the multitem-
poral multispectral satellite imagery. Specifically, given two mul-
tispectral images, represented asX = [x1, . . . ,xL] ∈ R

M×L and
Y = [y1, . . . ,yL] ∈ R

M×L (the two-dimensional representation of
multi-band images [1]), covering the same spatial area but acquired
at different time instances, the aim is to unsupervisedly detect the
changes between the two images, whereL is the number of pixels
andM is the number of spectral bands. CD techniques are mainly
categorized into two classes, one for disaster mapping and another
for land cover/use monitoring (LCUM) [2], where the latter will be
the focus of this paper. In comparison with changes caused bydisas-
ter (e.g., forest fire), the changes in LCUM application are in general
subject to relatively small regions (cf. (A1) in Section 2).

Most CD methods are based on analyzing the so-calleddiffer-
ence image (DI) Z , X − Y ∈ R

M×L [3], whoseℓ’s pixel is
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zℓ , xℓ − yℓ ∈ R
M . A straightforward DI-based way is to detect

the changed pixels as those with significant differences; precisely,
the changesc = [c1, . . . , cL]

T ∈ {0, 1}L can be detected by

cℓ =

{
1, if ‖zℓ‖2 > ζ,

0, otherwise,
(1)

whereζ > 0 is a threshold, andcℓ = 1 means that theℓth pixel is
changed (andcℓ = 0 means otherwise). Some more sophisticated
DI-based approaches employ principal component analysis (PCA),
including clustering PCA (clPCA) [3] and iterative PCA (itPCA) [4].
However, these methods quite easily suffer from the interference of
speckle noise scattered everywhere, as can be seen from Figures 1(e)
and 1(f). This motivates us to further assume that the changepattern
in LCUM would be composed of a number of smooth regions (cf.
(A2) in Section 2).

Another powerful statistic-based method is Beyasian Significant
Zero for Image (iBSiZer) [5], which, as far as we know, yieldsstate-
of-the-art CD performance and will serve as our key competitor. The
speckle noise is significantly reduced by iBSiZer, but thereare still
some artifacts in the change map; cf. Figure 1(d). In this paper,
we design a novel CD criterion to account for both aforementioned
assumptions. Such criterion induces a large-scale non-convex opti-
mization, which is reformulated into a convex problem usingconvex
relaxation [6,7] that yields a probabilistic change map. That said, the
value ofcℓ is no longer binary but in the interval[0, 1], interpreted as
the change probability of theℓth pixel. This would be more practical
than conventional binary-valued CD methods because, for pixels not
easy to be classified, our method just suggests a valuecℓ ∈ [0, 1]
to indicate the probability, which can be efficiently computed by the
alternating direction method of multipliers (ADMM) [7]; when a bi-
nary map is preferred, one can threshold the probability mapat 0.5
in the maximum-likelihood sense, which is quite effective as will be
seen in terms of several quantitative CD performance indices. We
also reveal a link between the proposed criterion and the DI-based
criterion, and demonstrate the outstanding performance ofour fully
unsupervised CD algorithm using real satellite images acquired by
Satellite Pour l’Observation de la Terre (SPOT-7) [8].

Notation: Diag(v) is a diagonal matrix whoseith diagonal en-
try is [v]i (i.e, theith entry of vectorv). diag(M) is a column vector
whoseith entry is[M ](i,i); here,[M ](i,j) denotes the(i, j)th entry
of matrixM . conv(·) denotes convex hull. vec(M) is the vector-
ization operator, andvec−1

m×n(v) is them× n matrixM satisfying
vec(M) = v. ⊙ is the Hadamard product.‖ · ‖1, ‖ · ‖2 and‖ · ‖F
are theℓ1-norm, Euclidean norm and Frobenius norm, respectively



(resp.).1N and0N denote the all-one and all-zeroN -vectors, resp.
IZ , {1, . . . , Z} (Z is positive integer).

2. CD CRITERION DESIGN

As discussed above, we adopt the following assumptions:

(A1) the changes are subject to relatively small regions;

(A2) the change pattern is piecewise smooth.

These assumptions will be rigorously formulated later. Fornow, we
further illustrate them using real satellite imagery. In Figure 1(a)
(resp., Figure 1(b)), we show false color composition (NIR-R-G) of
SPOT-7 imageX (resp.,Y ) acquired over Hsinchu County region
of Taiwan, on March 24, 2017 (resp., May 24, 2018). This image
pair illustrates a challenging scenario for CD study because they
were acquired under different illumination conditions. This area
(coordinate of upper-left pixel: latitude24o50′4.08′′N; longitude
121o6′3.74′′E) had been mostly covered by forest, but later some
of its subareas incurred deforestation for other purpose ofland use;
those subareas are marked by white color in Figure 1(c), fromwhich
one can see that (A1)-(A2) do well characterize those changes.
We acknowledge that these assumptions are particularly made for
LCUM (anthropogenic factor), and may not hold for changes caused
by disaster (natural factor). Effective CD criterion/algorithm, aided
by suitable satellite imagery, is needed for efficient LCUM.

To formulate (A1)-(A2) rigorously, we useC ∈ {0, 1}L1×L2

to denote the change map for a region withL1 × L2 pixels, where
L1L2 = L, andC satisfies vec(C) = c (cf. (1)). We are now in
place to design our CD criterion, composed of three parts:

1. If the (i, j)th pixel is detected as unchanged (i.e.,[C](i,j) =
0), it means thatxℓ andyℓ should be similar, whereℓ =
i + (j − 1)L1. Thus, the first part of our criterion is to min-
imize ‖(X − Y )Diag

(
vec(1L11

T
L2

−C)
)
‖2F , which col-

lectively considers all such unchanged pixels sifted by thedi-
agonal matrix.

2. The second part is to account for (A1). Note that the num-
ber of changed pixels can be written as1

T
L1
C1L2 (i.e., the

number of 1’s inC ∈ {0, 1}L1×L2 ), by minimizing which a
solution satisfying (A1) is promoted.

3. The third part is to account for (A2). Promoting piecewise
smoothness ofC is equivalent to promoting the sparsity of
its gradient map [9], where the latter can be achieved by min-
imizing the so-called (anisotropic) total variation (TV) regu-
larizer [10] defined as

TV(C) ,
∑

(i,j)

∥∥∥∥
[
∆h

(i,j)C, ∆v
(i,j)C

]T ∥∥∥∥
1

,

where∆h
(i,j) (resp.,∆v

(i,j)) is the horizontal (resp., vertical)
first-order difference operator at the(i, j)th pixel; precisely,
∆h

(i,j)C , [C](i,j) − [C](i,j−1) and∆v
(i,j)C , [C](i,j) −

[C](i−1,j). Note that the TV function, yielding considerable
success in machine learning and imaging sciences over the
last decade, is convex, but not everywhere differentiable [9].

All in all, we arrive at the following CD criterion:

min
[C](i,j)∈{0,1}, ∀(i,j)

{∥∥∥(X − Y )Diag
(
vec(1L11

T
L2

−C)
)∥∥∥

2

F

+ λ1T
L1
C1L2 + η

∑

(i,j)

∥∥∥[∆h
(i,j)C, ∆v

(i,j)C]T
∥∥∥
1

}
, (2)

where vec(C) = c, andλ ≥ 0 andη ≥ 0 are the regularization
weights for balancing these terms. In Section 3, we solve criterion
(2), which will also be linked to statistic-based (via convex relax-
ation) and DI-based (via Property 1) criteria.

3. CD ALGORITHM DESIGN

In this section, we design an algorithm to solve (2), which isa large-
scale, non-convex and non-differentiable optimization problem.

We first handle the non-convexity, caused by the binary-valued
constraintC ∈ {0, 1}L1×L2 , by relaxing it as

C ∈ conv
{
{0, 1}L1×L2

}
= [0, 1]L1×L2 ,

where the value[C](i,j) now belongs to the interval[0, 1] and can be
interpreted as the change probability of the(i, j)th pixel. Since the
objective function of (2) is already convex, the above convex relax-
ation technique [6, 7] allows us to reformulate (2) as a convex one,
which can then be represented concisely using vector representation:

min
c∈[0,1]L

‖(X − Y )Diag(1L − c)‖2F + λ1T
Lc+ ηTV(c), (3)

whose constraint is now a convex box constraint.
Although (3) is already convex, it is large-scale and non-

differentiable. So, we adopt proximal computing in ADMM to solve
it. To this end, by definingZ , X − Y ≡ [z(1), . . . ,z(M)]T ,
Ψ , [Diag(z(1)), . . . ,Diag(z(M))]T andψ , diag(ZTZ), and
by noticing‖(X−Y )Diag(1L−c)‖

2
F = ‖Z‖2F +‖Ψc‖22−2ψTc,

we can equivalently recast (3) into a form required by ADMM:

min
c=ci, i=1,...,4

1

2
‖Ψc1‖

2
2+

(
λ

2
1L −ψ

)T

c2+
η

2
TV(c3)+IB(c4),

(4)
where IB(·) is the indicator function for the box constraint, i.e.,
IB(c) = 0 if c ∈ B , [0, 1]L (IB(c) = ∞, otherwise).
Then the ADMM algorithm [7] for solving (4) is detailed in Al-
gorithm 1, referred to as CD-ADMM, in which the augmented La-
grangian of (4) is defined asL(c, {ci}4i=1, {di}

4
i=1) =

1
2
‖Ψc1‖

2
2+(

λ
2
1L −ψ

)T
c2 +

η

2
TV(c3) + IB(c4) +

∑4
i=1

µ

2
‖c− ci − di‖

2
2,

where{di} are scaled dual variables, andµ > 0 is the penalty pa-
rameter. Before deriving closed-form solutions for the subproblems
involved in Algorithm 1, we present some analysis results:

Property 1 The DI-based criterion (1) is subsumed as a special
case by our CD criterion (2).

Property 2 The sequence {ck} generated by Algorithm 1 converges
to a global optimum of (3), i.e., the convex relaxation of (2).

Property 1 (providing a theoretical justification for the empirical ob-
servation that (2) dominates DI-based criterion in CD performance)
can be proved, by using the pixel index transformℓ , i+(j− 1)L1

and by investigating the setting(η, λ) = (0, ζ2). Property 2 can be
proved, by applying ADMM convergence theory [7] on (4). Detailed
proofs for these properties are omitted here due to space limitation.
We remark that identifiability analysis is also critical to understand
the fundamentals of a criterion [11], and this challenging line is left
in the future research.

In case that a binary-valued change map is preferred, one can
simply threshold the probabilistic map at 0.5 in the maximum-
likelihood sense; this strategy is useful when no further statistic in-
formation is available, and quite effective as justified using several



Algorithm 1 The CD-ADMM Algorithm for Solving (4)

1: Given (X ,Y ), λ > 0, η > 0 andµ > 0.
2: Initialize c0 := 0L (or by warm start), andd0

i := 0L, ∀i ∈ I4.
Setk := 0.

3: repeat
4: Update{ck+1

i }4i=1 ∈ argmin{ci} L
(
ck, {ci}

4
i=1, {d

k
i }

4
i=1

)
;

5: Updateck+1 ∈ argminc L
(
c, {ck+1

i }4i=1, {d
k
i }

4
i=1

)
;

6: Updatedk+1
i := dk

i + ck+1
i − ck+1, ∀i ∈ I4;

7: k := k + 1;
8: until the predefined stopping criterion is met.
9: Output the probabilistic change map̂C := vec−1

L1×L2
(ck).

quantitative CD performance indices. To complete Algorithm 1, we
still need to discuss how to update{ck+1

i }4i=1 andck+1 next.

3.1. Algorithm Implementation

A nice property of the reformulation (4) is that the five variables (i.e.,
(c1, c2, c3, c4, c)) can all be decoupled [12]. First, we haveck+1

1 ∈
argminc1

1
2
‖Ψc1‖

2
2 +

µ

2
‖ck − c1 − d

k
1‖

2
2, whose closed-form so-

lution can be derived asck+1
1 = µ(ΨT

Ψ + µIL)
−1(ck − dj

1) =

µ
[
(‖z1‖

2
2 + µ)−1, . . . , (‖zL‖

2
2 + µ)−1

]T
⊙ (ck − dj

1), where the
latter does not involve the inversion of a hugeL × L matrix. Sec-
ond, ck+1

2 ∈ argminc2

(
λ
2
1L −ψ

)T
c2 + µ

2
‖ck − c2 − dk

2‖
2
2,

whose closed-form solution can be derived asck+1
2 = ck − dk

2 −
1
µ

(
λ
2
1L −ψ

)
. Third, we haveck+1

3 ∈ argminc3
η

2
TV(c3) +

µ

2
‖ck − c3 − dk

3‖
2
2, which is exactly the total variation denois-

ing operator (withck − dk
3 considered as the noisy input im-

age). This operator can be efficiently solved using split Breg-
man method [13, 14], whose implementation is available online1.
Fourth, we haveck+1

4 ∈ argminc4 IB(c4) + µ

2
‖ck − c4 −

dk
4‖

2
2, whose solution can be verified as

∏
B(c

k − dk
4) (the pro-

jection of ck − dk
4 onto the boxB = [0, 1]L), i.e., [ck+1

4 ]i =




[ck − dk
4 ]i, if ck − dk

4 ∈ [0, 1],

0, if ck − dk
4 < 0, ∀i ∈ IL.

1, otherwise,

Finally, we have

ck+1 ∈ argminc

∑4
i=1

µ

2
‖c − ck+1

i − dk
i ‖

2
2, whose solution can

be easily verified asck+1 = 1
4

∑4
i=1(c

k+1
i + dk

i ).

4. EXPERIMENTAL RESULTS WITH SPOT-7 DATA

The real satellite imagesX ,Y ∈ R
M×L (L = 800 × 800 pixels

with 1.5 meter ground sampling distance;M = 4 spectral bands
ranging from 450 to 890 nm) used, as described in Section 2, are
acquired by SPOT-7 [8] over Hsinchu County region of Taiwan,on
March 2017 (forX) and May 2018 (forY ), resp. This pair of im-
ages illustrates a challenging scenario for CD study due to the dif-
ferent illumination conditions, as can be seen from their false color
compositions; cf. Figures 1(a) and 1(b). The land use of the studied
area, originally covered by forest mostly, underwent some changes
between the two studied time instances due to anthropogenicdefor-
estation; those changed subareas are marked by white color (i.e.,
C(i,j) = 1) in Figure 1(c), where pixels withC(i,j) = 0 are marked
by black color.

1https://www.mathworks.com/matlabcentral/fileexchange/
36278-split-bregman-method-for-total-variation-denoising

Table 1. Quantitative comparison.
Methods PFAR (↓) PMAR (↓) PDA (↑) κ (↑)

iBSiZer [5] 0.0105 0.0207 0.9888 91.20%
clPCA [3] 0.0195 0.1788 0.9703 76.36%
itPCA [4] 0.0578 0.2994 0.9267 51.25%

CD-ADMM 0.0032 0.0861 0.9915 92.79%

This image pair was fed into benchmark CD methods, includ-
ing iBSiZer [5], clPCA [3] and itPCA [4], as well as the pro-
posed CD-ADMM algorithm (i.e., Algorithm 1 with(λ, η, µ) =
(1e-6, 1.08, 0.90)). The changed pixels detected by these algorithms
are marked by white color in Figures 1(d), (e), (f) and (g), resp. The
probabilistic version of change map̂C obtained by CD-ADMM is
also provided in Figure 1(h), which would provide good information
for user to double confirm whether a region is changed or not. One
can see that the change maps obtained by clPCA and itPCA suffer
from serious speckle noise. The change mapĈ obtained by iBSiZer
is much improved but still has some artifacts. The change mapĈ

obtained by CD-ADMM holds best visual resemblance to the ref-
erence map, as also indicated quantitatively by the global detection
accuracy measurePDA (to be defined later) in Table 1.

For quantitative comparison, we adopt four commonly used CD
performance indices. To define them, letN1 (resp.,N2) be the num-
ber of changed (resp., unchanged) pixels that are detected as changed
ones, and letN3 (resp.,N4) be the number of changed (resp., un-
changed) pixels that are detected as unchanged ones (N1 + N2 +
N3 + N4 = L). Then, the four indices are defined as follows:1)
false alarm ratePFAR ,

N2
N2+N4

(the smaller, the better);2) missed

alarm ratePMAR ,
N3

N1+N3
(the smaller, the better);3) detection

accuracyPDA ,
N1+N4

L
(the larger, the better);4) Cohen’s kappa

coefficient (the larger, the better), defined as

κ , (PDA − Pguess)/(1− Pguess), (5)

wherePguess, [(N1+N3)(N1+N2)+(N2+N4)(N3+N4)]/L
2 is

the probability of the event that a random algorithm (which guesses a
pixel as a changed one with probabilityN1+N2

L
) correctly detects the

class of a pixel. The results are summarized in Table 1. The proposed
CD-ADMM performs best in terms of the false alarm rate, but per-
forms second in terms of missed alarm rate. To investigate deeper,
for each algorithm under test, we use yellow color to mark those
N3 changed pixels it missed; since the yellow region associates with
some[Ĉ](i,j) = 0 (by definition ofN3), it must be non-overlapping

with the white region ([Ĉ](i,j) = 1) and is thus displayed on the
same subfigure to save space. From Figure 1, most of theN3 missed
pixels do not really matter in practice, because those yellow regions
are mostly located inside the white regions; for this reason, the user
(e.g., government) would still be aware of the changes in theyellow
regions when the user has been aware of the detected changes (in the
white regions) caused by deforestation. Thus,PMAR would not be a
critical index in this case study. By contrast,PFAR is more important
in the LCUM application because highPFAR will waste unnecessary
resources during the field survey stage.

Cohen’s kappa coefficientκ is probably the most credible in-
dex to measure the CD performance, because it takes into account
the possibility of the agreement occurring by chance (i.e.,by ran-
dom guess; cf. (5)), for which CD-ADMM significantly outperforms
peer CD methods (about 1.6% higher than the state-of-the-art that we
have been aware of); note that CD-ADMM (8.51e+1 sec.) is about
20 times faster than iBSiZer (1.85e+3 sec.) (clPCA and itPCAtook
1.03e+2 and 7.95e+1 sec., resp.). As for the global accuracyindi-
cated byPDA , CD-ADMM again performs best.



Fig. 1. False color compositions (NIR-R-G) of two SPOT-7 images(X ,Y ) are displayed in (a) and (b), resp. The reference change map
C, labeled artificially, is displayed in (c), where changes are marked by white color. The changes in̂C, detected by iBSiZer, clPCA, itPCA
and the proposed CD-ADMM, are marked by white color in (d), (e), (f) and (g), resp., where the yellow color is used to mark those changed
pixels (inC) not detected by these methods. Finally, (h) shows the probabilistic version ofĈ obtained by CD-ADMM.

5. CONCLUSION

We designed a new CD criterion under assumptions particularly
made for LCUM, and linked it with conventional statistic-based (via
convex relaxation) and DI-based (via Property 1) criteria.Then, we
adopted proximal computing to develop the CD-ADMM algorithm
(i.e., Algorithm 1) for solving our criterion with convergence guaran-
tee (cf. Property 2), where closed-form solutions are derived for effi-
cient implementation. Experiments were conducted on real SPOT-7
satellite images, demonstrating superior efficacy of CD-ADMM in
terms of several indices (including Cohen’s kappa coefficient). An-
alyzing the identifiability of the proposed CD criterion is aline de-
serving future investigation.
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cation accuracies of Sentinel-2 and Landsat-8 data for landcover/use
mapping.” Photogrammetry, Remote Sensing & Spatial Information
Sciences, vol. 41, 2016.

[3] T. Celik, “Unsupervised change detection in satellite images using prin-
cipal component analysis andk-means clustering,”IEEE Geoscience
and Remote Sensing Letters, vol. 6, no. 4, pp. 772–776, 2009.

[4] N. Falco, P. R. Marpu, and J. A. Benediktsson, “A toolbox for unsu-
pervised change detection analysis,”International Journal of Remote
Sensing, vol. 37, no. 7, pp. 1505–1526, 2016.

[5] L. Pasanen and L. Holmström, “Bayesian scale space analysis of tem-

poral changes in satellite images,”Journal of Applied Statistics, vol. 42,
no. 1, pp. 50–70, 2015.

[6] Y. Liu, F. Condessa, J. Bioucas-Dias, J. Li, and A. Plaza,“Convex for-
mulation for hyperspectral image classification with superpixels,” in
IEEE International Geoscience and Remote Sensing Symposium, 2016,
pp. 3294–3297.

[7] C.-Y. Chi, W.-C. Li, and C.-H. Lin,Convex Optimization for Signal
Processing and Communications: From Fundamentals to Applications.
Boca Raton, FL, USA: CRC Press, 2017.

[8] V. Parage, B. Vajsova, N. Faget, and P. J.Åstrand, “New sensors bench-
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